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Abstract—We propose a decentralized spatial soft-core cache
placement (SSCC) policy for wireless networks. SSCC yields
a spatially balanced sampling via negative dependence across
caches, and can be tuned to satisfy cache size constraints with
high probability. Given a desired cache hit probability, we
compare the 95% confidence intervals of the required cache
sizes for independent placement, hard-core placement and SSCC
policies. We demonstrate that in terms of the required cache
storage size, SSCC can provide up to more than 180% and 100%
gains with respect to the independent and hard-core placement
policies, respectively. SSCC can be used to enable proximity-
based applications such as device-to-device communications and
peer-to-peer networking as it promotes the item diversity and
reciprocation among the nodes.

I. INTRODUCTION

Distributed caching is a powerful technique to minimize the

total average delay by replacing the backhaul capacity with

storage capacity at small cells [1], and to enable spectral reuse

and throughput gain in networks [2]. The goal of an efficient

cache placement is to maximize the hit probability, i.e. the

probability of obtaining the desired item from a neighboring

cache. This is affected by the demand distribution, network

topology, range of communication, and cache storage size.

Fundamental limits of caching have been studied in [2], in

which the content placement phase is carefully designed so

that a single coded multicast transmission can satisfy different

demands. Capacity scaling laws have been explored in [2], and

rate-memory and storage-latency tradeoffs have been studied

in [3]. Caching has been studied in the context of device-

to-device (D2D) communications in [4], and interference

management in [5], and in optimization of cloud and edge

processing for radio access networks in [6].

Temporal caching models have been analyzed in [7] for

popular cache replacement algorithms, e.g. least recently used

(LRU), least-frequently used, and most recently used cache

update. Decentralized spatial LRU caching strategies have

been developed in [8]. These combine the temporal and

spatial aspects of caching, and approach the performance of

centralized policies as the coverage increases. However, they

are restricted to the LRU principle. A time-to-live (TTL) policy

with a stochastic capacity constraint and low variance has been

proposed in [9]. The BitTorrent protocol employs the rarest

first and choke algorithms to promote diversity of the pieces

among peers, and foster reciprocation, respectively. These

have been demonstrated in the context of peer-to-peer (P2P)

file replication in the Internet [10]. A good piece replication

algorithm should minimize the time spent in the transient state.

There exist studies focusing on decentralized (geographic)

content placement policies such as [1], [11], [12], [13]. The

main focus of the literature in this direction is to maximize

the average cache hit probability subject to an average cache

constraint. This optimization problem can be solved as a

convex program. However, to the best of our knowledge, the

related literature does not provide guarantees in terms of (a)

how far-off the average cache size is from reality, (b) how

far-off the average cache hit rate is from reality, and (c) how

stable the cache hit probability across the caches.

In the current paper, we provide a decentralized spatial soft-

core cache placement (SSCC) policy. Since the cache storage

size is finite, it is intuitive to have an exclusion range-based

caching model such that the caches storing the same item are

never closer to each other than some given distance (negative

dependence), so as to promote diversity and reciprocation.

SSCC roots in spatially balanced sampling, which is motivated

by the request arrivals. For example, in P2P networking, the

actual demand distribution is not known by nodes, and the

cache updates in each peer are triggered by the requests.

Furthermore, the traffic density in cellular networks is in

general not uniform across the network, and the peak hour

density can be approximated by a log-normal distribution [14].

Hence, instead of having a fixed exclusion range, it is desirable

to have a variable exclusion range, depending on the popularity

of the item. The SSCC policy come to the fore by putting a

mark distribution on the exclusion range of an item based

on its popularity. The marks may correspond to the detection

ranges or the transmit powers of the nodes in heterogeneous

network scenarios. Our objective is to address the issues (a)-

(c) above in order to provide a better trade-off between the

actual cache hit rate and the cache size violation probability.

Our main contributions and use cases of SSCC are:

i. SSCC has desirable properties: spatially balanced sam-

pling across caches, concentration of the cache size, better

cache over-provisioning, and multi-hop connectivity.

ii. SSCC yields a better cache hit probability-cache violation

probability tradeoff than the state of the art. In terms of the

required cache storage size, SSCC can provide more than

180% and 100% gains with respect to independent place-

ment [11], and hard-core placement [13], respectively.

iii. SSCC is suited for enabling proximity-based applications

(D2D, P2P), and offloading mobile users in networks.

iv. SSCC has connections with rarest first caching as it

promotes the item diversity and reciprocation among the

nodes. Hence, it can be well-suited for P2P applications.
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Notation. Let Φ denote the mother point process (p.p.), and

Φth be the child p.p. obtained via the thinning of Φ. Let π be a

spatial caching policy that yields a set of child p.p.’s {Φth,i}i,
where Φth,i is the set of retained points that cache item i. Let

A be a given bounded convex set in R
2 containing the origin,

and rA be its dilation by the factor r. ✶{A} is the indicator

of event A. Let B be a bounded Borel set. Let Φ(B) be the

random number of points of the spatial p.p. Φ which lie in

B. Any receiver can obtain the desired item i if it is within a

critical communication range Rc. Assume that B = B0(Rc),
where B0(r) is a ball in R

2 with radius r, centered at origin.

II. HOW TO OPTIMIZE THE CACHING GAIN

The locations of the nodes (caches) in the network are

modeled by a homogeneous Poisson point process (PPP) Φ
in R

2 with intensity λ. There are M items in the network,

each having the same size, and each node has the same

cache storage size N < M . Each user makes requests

based on a Zipf popularity distribution over the set of the

items. The probability mass function (pmf) of such requests

(demand) is given by pr(i) = i−γr
/
∑M

j=1 j
−γr , where γr

determines the tilt of the Zipf distribution. The demand profile

is the Independent Reference Model (IRM), i.e., the standard

synthetic traffic model in which the request distribution does

not change over time [15]. The request distribution is uniform

across the network, i.e., isotropic, and does not change over

time. Hence, the intensity of the requests for item i, i.e. λi,

is proportional to its demand probability pr(i). Let I ∼ pr
be the random variable that models the demand. Each node

is associated with the variables zxi = ✶{i ∈ Cache(x)} that

denote whether item i is available in its cache or not. There

is also a cost wk associated with obtaining an item within

the presence of k nodes in the range. Given these parameters,

consider the caching gain function of the following form:

F (Z) = EI

[

∞
∑

k=1

wk

(

1−
k
∏

k′=1

(

1− zpk′I

)

)

]

, (1)

where (1) can be used to model multi-hop coverage scenarios

as in [12], and Boolean Model coverage scenarios as in [11],

[13]. Let λi = pr(i), and wk = P(Φ(B) = k), which is

the probability that k caches (nodes of the original p.p. Φ)

cover the typical receiver, and w0 is the probability of having

no connection. Assume that k∗ is the first index such that a

transmitter has the desired item i. Then, from (1), the caching

gain for item i is
∑∞

k=k∗ wk = P(Φ(B) ≥ k∗), which is

the same as probability of having at least k∗ transmitters.

Equivalently, the cost of caching is
∑k∗−1

k=1 wk.

Since both the multi-hop and Boolean coverage scenarios

are equivalent up to scaling, we focus on the second scenario.

We have the following immediate observation.

Proposition 1. F (Z) is convex if zp′

k
i’s are negatively associ-

ated (NA) [16] across k′ ∈ {1, . . . , k}, for all i ∈ {1, . . . ,M}.

Proof. Exploiting (1), we have the following relation:

E[F (Z)] = EI

[

∑∞
k=0 wk

(

1− E

[

∏k
k′=1

(

1− zpk′I

)

])] (a)

≥

EI

[

∑∞
k=0 wk

(

1−
∏k

k′=1

(

1− E[zpk′I ]
)

)]

= F (E[Z]),

where (a) is due to that E
[

∏k
k′=1

(

1− zpk′ i

)

]

≤
∏k

k′=1

(

1−

E[zpk′ i]
)

as zpk′ i’s are NA across k′ ∈ {1, . . . , k}, ∀ i.

From Prop. 1, E[F (Z)] ≥ F (E[Z]). The expected cache hit

probability obtained via NA placement upper bounds the inde-

pendent placement solution with probabilities E[zpk′ i]. NA has

desirable properties in terms of sampling and concentration.

Some important results that hold for independent variables,

e.g., the Chernoff-Hoeffding bounds, and the Kolmogorov’s

inequality [16], also hold for NA variables.

From Prop. 1, it is clear that in terms of average cache

hit performance, NA placement performs better than indepen-

dent placement. Therefore, our main focus is on a class of

placement policies that are NA. We also demonstrate that NA

placement policies have lower variance across the nodes, hence

are more stable than independent placement policies.

III. A SOFT-CORE CACHING MODEL

The spatial soft-core caching (SSCC) policy is constructed

from the underlying PPP Φ by removing certain nodes de-

pending on the positions of the neighboring nodes, and on

the marks and weights attached to them. It generalizes the

Matérn II hard-core p.p. (MatII) such that there is a distinct

distribution modeling the exclusion radius of each item.

For each item i, let Φ̃i = {(xk,m
(i)
k , v

(i)
k )}k be a homoge-

neous independently marked PPP with intensity λ, and i.i.d.

R
2-valued marks, where Φ = {xk}, and {(m

(i)
k , v

(i)
k )} is

the random bivariate mark. The first component m(i) of the

bivariate mark is referred to as mark, and has distribution µ(i).

The mark of item i, i.e., m(i), denotes its exclusion radius, and

depends on its popularity in the network. If item i is more

popular than item j, then m(i) is stochastically dominated1

by m(j). The second component v(i) of the bivariate mark is

weight, which serves as a weight in the thinning procedure,

and has distribution ν
(i)

m(i) which might depend on m(i).

Let Φth,i be a soft-core p.p. that denotes the set of points

that cache item i. The cache placement model is such that

item i is stored in cache xk ∈ Φ if and only if cache xk is

kept as a point of Φth,i. Equivalently, we have

zxki = ✶{i ∈ Cache(xk)} = ✶{xk ∈ Φth,i}. (2)

Node xk is retained as a point of Φth,i with probability

E[zxki] = p(xk,m
(i)
k , v

(i)
k ,Φ). The weights are i.i.d. and

uniformly distributed, i.e. v
(i)
k ∼ U [0, 1], for each node xk

and item i. The marks m
(i)
k are distributed according to µ(i)

for each xk, and i. For the special case of MatII, i.e., when

the marks are fixed, we optimized the exclusion radii in [13].

The number of items in cache xk is the sum of the individual

items’ indicator functions C(xk) =
∑

i ✶{i ∈ Cache(xk)}.

The cache size constraint has to be satisfied on average, i.e.

N = E[C(xk)] =
∑

i
p(xk,m

(i)
k , v

(i)
k ,Φ), xk ∈ Φ. (3)

1X is stochastically dominated by Y , which is denoted by X ≤st Y , if
for all increasing functions g, we have E[g(X)] ≤ E[g(Y )].





The average cache hit probability is given by E[F (Z)] =
∑

i pr(i)P(Φth,i(B) > 0), where defining RSph = inf{s :
Φth,i(B0(s)) 6= 0}, given 0 /∈ Φth,i we have that

P(Φth,i(B) > 0) = P(RSph ≤ Rc |RSph > 0), (8)

which is the SCDF of Φth,i evaluated at Rc.

The variance of F (Z) across the nodes satisfies

Varπ[F (Z)] =
∑

i
p2r(i)Hπ,i(Rc)(1−Hπ,i(Rc)) (9)

since the spatial thinning processes across different items are

independent of each other. Under the IRM and a Zipf popu-

larity model, Varπ[F (Z)] decreases with increasing variance

of marks when E[C(x)] is held constant. A spatially balanced

sampling yields a low Varπ[F (Z)] as expected.

C. Migration to the Child Process: Effective Thinning

Consider the pair Φ − Φth of mother and child p.p.’s.

The spherical contact distance denotes the distance between

a typical point in Φ and its nearest neighbor from Φth.

Using (6), the SCDF for the p.p. Φ can be written as:

Hπ(R) = 1− exp
(

−

∫ R

0

2πrληπ(r, δ)dr
)

, (10)

where ηπ(r, δ) is the conditional thinning Palm-probability

(CTPP), i.e. the probability of the point x ∈ Φ migrating to

Φth under policy π, with a fixed (exclusion) radius δ. It equals

ηπ(r, δ) = P(x ∈ Φth|Φth ∩Bx0
(r) = ∅, x0 ∈ Φ). (11)

Remark 1. An effective thinning policy yields a larger CTPP

ηπ(r, δ). The more effective the thinning is, the larger (10) is.

From Theorem 2, Eπ[F (Z)] is improved if π is more effective.

We next compute the CTPP for the SSCC policy.

Proposition 2. The CTPP for PPP-SSCC is given as

ηSSCC(r, ~δ) =

∫

R

∫ 1

0

e−uλ
∫
R

∫
R2

h(||x||,m,n)dxµ(dn) duµ(dm),

where given radius marks m, n, h(||x||,m, n) satisfies the

relation
∫

R2 h(||x||,m, n) dx = π(m + n)2 − l2(r, n), where

l2(r, δ) is the area of the intersection of Bx0
(r) and Bx(δ).

Proof. The proof follows from generalizing [20, Eq. (15)].

Corollary 1. The CTPP for PPP-MatII is given as

ηMatII(r, δ) =
1− e−λ(πδ2−l2(r,δ))

λ(πδ2 − l2(r, δ))
.

The next Theorem shows that having a distribution on the

marks yields a more effective thinning than MatII does.

Theorem 3. The CTPPs satisfy ηSSCC(r, ~δ) ≥ ηMatII(r, m̄),
where ~δ = {m} is the set of marks in Φ̃, with m̄ = Em[m], .

Fig. 2. The radius of the smallest sphere centered at 0 and intersecting
the Boolean Model Φth. The SCDF is the conditional distribution
function of the radius of the sphere, given 0 /∈ Φth [19, Ch. 3.1].

Proof. From Prop. 2, we have that

ηSSCC(r, ~δ) =

∫

R

∫ 1

0

e−uλ
∫
R
(π(m+n)2−l2(r,n))µ(dn) duµ(dm)

= Em

[

EU

[

e−Uq(λ,r,m)
]]

= Em

[

1− e−q(λ,r,m)

q(λ, r,m)

]

,

where U ∼ U [0, 1], and q(λ, r,m) = λπ
(

m2 + 2mm̄2

)

+
λEm2

[

πm2
2 − l2(r,m2)

]

. Let f = e−x, x = Uλπ(m2 +

2mm̄2). We have, ηSSCC(r, ~δ) = Em[g(m)], with g = f−1
log(f) =

1−e−x

x
. Then g′ = e−x(x+1)−1

x2 , g′′ = 2−e−x[x2+2x+2]
x3 > 0.

Hence, ηSSCC(r, ~δ) = Em[g(m)] ≥ g(m̄) = ηMatII(r, m̄).

Exploiting Theorem 3, ηSSCC(r, ~δ) can be improved using a

mixture of marks. The variable exclusion range model can suit

to the case of cellular networks where demand is not uniform

across the network [14], which we left as future work.

D. Cache Over-Utilization

The cache placement requires C(x) =
∑

i ✶x∈Φth,i
≤ N ,

for all x ∈ Φ, where N is finite. The storage constraint is

satisfied on average, i.e. N = E[C(x)] =
∑

i p(x,mi, v,Φ),
x ∈ Φ. However, the set of child p.p.’s {Φth,i}i, i = 1, . . . ,M
might overlap. We need to make sure that the cache capacities

are not over-utilized. Hence, the intersection of the sampled

processes, i.e. ∩iΦth,i, should not include any x ∈ Φ more

than N times with high probability. We next provide an upper

bound for the violation probability of the cache size for SSCC.

Proposition 3. Bernstein bound for cache size. The cache

violation probability is upper bounded as

P(C(x) > C) ≤ exp

(

−
(C −N)2

Var[C(x)] + 1
3 (C −N)

)

, (12)

where Var[C(x)] =
∑M

i=1 Var[zxi] since the placement is

independent across items, where Var[zxi] = E[z2xi]−E[zxi]
2 =

p(x,mi, v,Φ)(1−p(x,mi, v,Φ)), for i ∈ {1, . . . ,M}, x ∈ Φ.

Proof. It follows from employing Bernstein inequality since

✶x∈Φth,i
are independent 1-0 random variables across i.



Fig. 3. The normalized cache size versus average cache hit rate for different placement policies. (Left) Rc = 3, (Right) Rc = 10.

As Var[C(x)] drops, the bound in (12) becomes lower.

Hence, the cache violation probability is negligible if the cache

placement strategy has very low-variance. In Sect. IV, we

demonstrate that SSCC has very small violation probability.

For the spatially independent placement policy in [11],

where nodes are sampled i.i.d., authors have proposed a

probabilistic placement technique to guarantee that the cache

constraint is satisfied with equality. However, in SSCC, nodes

are not sampled independently. Because the placement policy

is NA across the nodes, it is nontrivial to design probabilistic

placement techniques to satisfy the cache size constraint. In

this section, we discuss how to bound the violation probability,

and demonstrate in Sect. IV that for SSCC the cache violation

probability can be made negligibly small.

IV. NUMERICAL SIMULATIONS

The nodes live in a square region of the Euclidean plane

with area L2 where L = 100. To avoid edge effects, we

evaluate the performance only for the middle square region

with area L2/9. The network parameters are λ = 0.1 and

Rc ∈ {3, 10}. The request process is isotropic and Zipf

distributed with parameter γr = 0.1 over M = 100 items.

For MatII, there is a fixed exclusion range for a given

item, and we have derived the optimal exclusion radii in

[13]. Let ri be the optimized exclusion range for item i
for MatII. For SSCC, we assume that the marks m(i) for

item i (exclusion radii) are distributed according to a gamma

distribution µ(i) = Γ(0.7ri, 1) for each x ∈ Φ, and all items

i, where we choose its parameters such that the average value

of the radius mark for item i equals m̄(i) = 0.7ri. Hence,

Φth ∼SSCC[0.1,Γ(0.7ri, 1), U [0, 1], 1, f10]. We can observe

that the SSCC model can be used to optimize the cache hit

probability-cache violation probability tradeoff. As variance of

exclusion range increases, the violation probability might also

increase for a desired cache hit probability. Note that we do not

optimize the distributions of the marks µ(i) across all i over a

class of distributions. We leave the study of the fundamental

performance limits of SSCC as future work.

We numerically investigate how much cache over-

provisioning is required for different spatial cache placement

policies: spatially independent [11], MatII [13], and SSCC

cache placement. In Fig. 3, we investigate the required cache

size N (normalized) of each policy given that the probability

of cache violation is small such that P[|C(x)−N | ≤ ǫ] > 0.95
in order to characterize the required cache size for a given

average cache hit probability. We also illustrate the 95%
confidence intervals represented by the shaded regions, and

mark the cache sizes for different policies when the average

cache hit probability is Eπ[F (Z)] = 0.7. For example, when

Rc = 3, for the 95% confidence interval, the excess cache

ratio for independent placement in [11], and MatII placement

in [13] with respect to the SSCC policy is 142%, and 93%,

respectively. When we have Rc = 10, the respective excess

ratios for the independent and MatII placement policies are

188%, and 109%, which are illustrated on the plots. SSCC

yields a better concentration of the required cache size, which

is desired. Hence, policies like SSCC can be exploited so that

the cache does not overrun or underrun its capacity constraint.

SSCC gives insights into not only how to cache the content,

but also how to effectively sample in spatial settings. SSCC

is suited for enabling applications such as D2D and P2P as it

promotes the item diversity and reciprocation. Extensions in-

clude the incorporation of the spatial variation of the demand.

They also include employing the exclusion based models to

optimize the performance of time-to-live (TTL) caches.
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